Search results

Search for "thermal diffusion" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • processes (i.e., thermal diffusion and ion-induced diffusion) [32]. This approach is based on the linear cascade model and Gaussian approximation of energy distribution as developed by Sigmund [26] to describe ion–atom collisions inside the target. Rutherford backscattering spectrometry (RBS) studies in the
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • multilayer nanosystem composition and structure due to the increase in the thermal diffusion processes. Conclusion The paper proposes a technique and describes a mathematical model for studying technological modes and parameters in the manufacture of multilayer nanosystems. The model was tested in the study
PDF
Album
Full Research Paper
Published 24 Nov 2020

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • metal-assisted etching technique. After fabrication, a thermal diffusion process is used for doping the nanowire forest with phosphorous. A suitable experimental technique has been developed for the measurement of the Seebeck coefficient under static conditions, and results are reported for different
  • not possible to fabricate an optimized generator module based on two legs with opposite heavy doping. A possible solution is to dope the silicon nanowires by thermal diffusion [21], after their fabrication by MACE. In this work, we present the measurement of the Seebeck coefficient of SiNWs doped
  • layer of oxide as a result of the HNO3 etching. The doping of the silicon nanowires has been carried out by thermal diffusion from a solid source. At first, the chips with the SiNW forests, with a surface of roughly 1 × 1 cm2 have been cleaned in buffered HF (BHF) for 1 min, to remove the SiO2 grown
PDF
Album
Full Research Paper
Published 11 Nov 2020

Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet

  • Ganji Narender,
  • Kamatam Govardhan and
  • Gobburu Sreedhar Sarma

Beilstein J. Nanotechnol. 2020, 11, 1303–1315, doi:10.3762/bjnano.11.114

Graphical Abstract
  • diffusion rate and inversely proportional to the thermal diffusivity, the thermal diffusion rate is reduced for higher estimated values of Pr. As a consequence, the temperature of the fluid is significantly reduced as well as the thermal boundary layer thickness. Conversely, the nanoparticle volume fraction
PDF
Album
Full Research Paper
Published 02 Sep 2020

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • values of final conductance in about 95% of the structures investigated. We now want to address the question how the thinning process in these morphologically quite different structures proceeds under conditions of EM and at temperatures at which thermal diffusion is largely suppressed [26]. Due to the
  • nm wide, the similarity of conductance histograms below 15G0 lead us to the conclusion that only a single contact existed in most cases. A large range of unstable configurations between 14G0 and 5G0 may be characteristic for the EM process at a temperature where only limited thermal diffusion is
PDF
Album
Full Research Paper
Published 22 Apr 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • surface by the ion beam and thermal diffusion of the target atoms. Recently, the gas cluster ion beams (GCIB) technique has been introduced as a mask-free method to produce nanostructures on solid surfaces [11][12]. Among its advantages are the lack of chemical contamination and the low damage to the
PDF
Album
Full Research Paper
Published 24 Feb 2020

Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects

  • Sabrina Barbosa de Souza Ferreira,
  • Gustavo Braga,
  • Évelin Lemos Oliveira,
  • Jéssica Bassi da Silva,
  • Hélen Cássia Rosseto,
  • Lidiane Vizioli de Castro Hoshino,
  • Mauro Luciano Baesso,
  • Wilker Caetano,
  • Craig Murdoch,
  • Helen Elizabeth Colley and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2019, 10, 2304–2328, doi:10.3762/bjnano.10.222

Graphical Abstract
  • from formulations could permeate the mucosa. Moreover, the thermal diffusion length (µs) was 31 µm on both sides of the oral mucosa. Thus, CUR permeated the total sample thickness (818 µm). In this sense, the results of the PAS and Franz cell technique are complementary, since PAS can elucidate if the
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2019

Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films

  • Alexander Gaul,
  • Daniel Emmrich,
  • Timo Ueltzhöffer,
  • Henning Huckfeldt,
  • Hatice Doğanay,
  • Johanna Hackl,
  • Muhammad Imtiaz Khan,
  • Daniel M. Gottlob,
  • Gregor Hartmann,
  • André Beyer,
  • Dennis Holzinger,
  • Slavomír Nemšák,
  • Claus M. Schneider,
  • Armin Gölzhäuser,
  • Günter Reiss and
  • Arno Ehresmann

Beilstein J. Nanotechnol. 2018, 9, 2968–2979, doi:10.3762/bjnano.9.276

Graphical Abstract
  • assisted scanning probe lithography [25] or 250 nm wide dots fabricated by direct interferometric laser annealing [34]. Local annealing, however, results in three-dimensional temperature gradients within the magnetic film causing thermal diffusion and material intermixing over several hundreds of
PDF
Album
Full Research Paper
Published 03 Dec 2018

Grazing-incidence optical magnetic recording with super-resolution

  • Gunther Scheunert,
  • Sidney. R. Cohen,
  • René Kullock,
  • Ryan McCarron,
  • Katya Rechev,
  • Ifat Kaplan-Ashiri,
  • Ora Bitton,
  • Paul Dawson,
  • Bert Hecht and
  • Dan Oron

Beilstein J. Nanotechnol. 2017, 8, 28–37, doi:10.3762/bjnano.8.4

Graphical Abstract
  • contrast to the present study, thermal diffusion played no decisive role due to the sub-ns dynamics. Sample Characterization and Experimental Setup Grazing-incidence illumination experiments were done on two atomic force microscopes (AFMs): an AIST CombiScopeTM and an AIST-NT OmegaScope RTM at wavelengths
  • found to be at 40 mW laser power and 50 ns pulse width. Due to the timescale of the heating process, thermal diffusion plays a significant role and results in lowered peak temperatures for longer pulses at smaller powers. Therefore, no magnetic feature could be detected for 20 mW/100 ns pulses, which
  • theoretically deliver the same energy as 40 mW/50 ns pulses. Instead, the switching threshold pulse duration for 20 mW was around 150–200 ns (not shown) with a line-width broadened by thermal diffusion. To obtain the smallest possible features, large powers and short pulses are the route to success, whereas the
PDF
Album
Full Research Paper
Published 04 Jan 2017

The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures

  • Yevgeniy R. Davletshin and
  • J. Carl Kumaradas

Beilstein J. Nanotechnol. 2016, 7, 869–880, doi:10.3762/bjnano.7.79

Graphical Abstract
  • laser pulse interaction with the gold nanostructures, Qrh [49]. Heat transfer (HT) The temperature produced by heat sources due to plasma formation [28], laser pulse interaction and thermal diffusion was solved in all domains outside of the nanoparticles, except the PMLs (Figure 1). The HT model was
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2016

Electroviscous effect on fluid drag in a microchannel with large zeta potential

  • Dalei Jing and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2015, 6, 2207–2216, doi:10.3762/bjnano.6.226

Graphical Abstract
  • of electrostatic interaction, is formed next to the solid surface. Above that, the diffuse layer, a thin layer consisting of mobile ions, is formed because of loose electrostatic force and thermal diffusion. Both the adsorbed layer and the diffuse layer constitute an electric double layer (EDL) [5
PDF
Album
Full Research Paper
Published 24 Nov 2015

High photocatalytic activity of V-doped SrTiO3 porous nanofibers produced from a combined electrospinning and thermal diffusion process

  • Panpan Jing,
  • Wei Lan,
  • Qing Su and
  • Erqing Xie

Beilstein J. Nanotechnol. 2015, 6, 1281–1286, doi:10.3762/bjnano.6.132

Graphical Abstract
  • /bjnano.6.132 Abstract In this letter, we report a novel V-doped SrTiO3 photocatalyst synthesized via electrospinning followed by a thermal diffusion process at low temperature. The morphological and crystalline structural investigations reveal not only that the V-doped SrTiO3 photocatalyst possesses a
  • nanofibers is possibly attributed to the V5+ ion doping increasing the light utilization as well as to the outstanding porous features, the excellent component and structure stability. Keywords: electrospinning; photocatalysis; porous nanofibers; SrTiO3; thermal diffusion; vanadium-ion doping; Introduction
  • few photocatalytic studies for V-doped SrTiO3 nanomaterials. Thermal diffusion has been extensively applied to ion doping because it can effectively avoid the formation of a second phase in the host matrix [21][22]. Herein, pure SrTiO3 porous nanofibers are prepared by electrospinning, which is a more
PDF
Album
Letter
Published 09 Jun 2015

Multiscale modeling of lithium ion batteries: thermal aspects

  • Arnulf Latz and
  • Jochen Zausch

Beilstein J. Nanotechnol. 2015, 6, 987–1007, doi:10.3762/bjnano.6.102

Graphical Abstract
PDF
Album
Full Research Paper
Published 20 Apr 2015

Mapping of plasmonic resonances in nanotriangles

  • Simon Dickreuter,
  • Julia Gleixner,
  • Andreas Kolloch,
  • Johannes Boneberg,
  • Elke Scheer and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2013, 4, 588–602, doi:10.3762/bjnano.4.66

Graphical Abstract
  • et al. [26] for Au nanorods on Si when irradiated with femtosecond pulses, and the quantitative agreement with a carrier-diffusion-based model is reported. Picosecond laser melting In contrast to the femtosecond irradiation studies presented above, thermal diffusion is the dominating factor when
  • the plasmonic structure itself, however, are interesting both from a technical as well as a fundamental point of view. For fundamental considerations, the dominance of thermal diffusion leads to a simplification in the distribution of the energy provided by the incoming laser pulse. As the only
  • system provides a spatially confined heat source, which is only limited by the thermal diffusion length given by the pulse duration of the illuminating laser. General features Figure 14 gives an overview of the different stages of the picosecond melting/ablation for gold triangles with a side length of
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2013
Other Beilstein-Institut Open Science Activities